Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 210 3341 2341 31105 21105 30 0
Sample Output
nonoyesnoyesyes
1 #include2 int f[35000],prime[5000],count = 0 ; 3 typedef __int64 LL ; 4 void getPrime(){ 5 for(int i=2;i<=34000;i++) 6 if(!f[i]){ 7 prime[count++] = i; 8 for(int j=i*i;j<=34000;j+=i) 9 f[j] = 1;10 }11 }12 bool Isprime(int n){13 for(int i=0;i